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We describe the evolution of a bistable chemical reaction in a closed two-dimensional chaotic laminar flow,
from a localized initial disturbance. When the fluid mixing is sufficiently slow, the disturbance may spread and
eventually occupy the entire fluid domain. By contrast, rapid mixing tends to dilute the initial state and so
extinguish the disturbance. Such a dichotomy is well known. However, we report here a hitherto apparently
unremarked intermediate case, a persistent highly localized disturbance. Such a localized state arises when the
Damköhler number is great enough to sustain a “hot spot,” but not so great as to lead to global spread. We
show that such a disturbance is located in the neighborhood of an unstable periodic orbit of the flow, and we
describe some limited aspects of its behavior using a reduced, lamellar model.
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I. INTRODUCTION

The progress of chemical or biological processes mixed
by fluid flows is of great environmental and industrial sig-
nificance, in a wide variety of contexts �see Refs. �1–4� for
some broad applications; in this paper we shall, for brevity,
mostly use the language of chemical processes in our discus-
sions�. The underlying processes often possess multiple pos-
sible long-time states, characterized by whether some reac-
tion proceeds or dies out. The ultimate fate of a localized
initial disturbance can depend subtly on the combined influ-
ences of advection by the fluid, diffusion of the reactants,
and the reaction kinetics.

This paper concerns the influence of chaotic, laminar fluid
mixing on the course of a bistable chemical reaction in a
closed flow domain. In a spatially homogeneous environ-
ment, such a reaction tends to one of two steady states
�which we describe below as the “quenched” and “excited”
states� according to whether or not the initial reactant con-
centrations exceed some threshold. However, the large-time
behavior of the reaction from a spatially localized distur-
bance subject to fluid mixing is a more subtle question, since
the mixing has two competing effects on the course of the
reaction. On the one hand, the mixing promotes the chemical
reaction, since, according to the kinematics of the fluid mo-
tion, interfaces are exponentially stretched. However, the
mixing also tends to suppress the reaction, since the repeated
stretching and folding that is characteristic of chaotic flows
generates a complicated filamentary pattern; if the thinning
of the filaments is sufficiently rapid, it may ultimately
quench the reaction, through diffusive dilution of the reac-
tants. The loss of a stable excited state as the mixing grows
in strength �or as the reaction rate is reduced� may be viewed
as a saddle-node bifurcation, and has been identified in a
number of reaction schemes �5–11�. For example, Neufeld et
al. �6� note that for both bistable and autocatalytic reactions
there are two regimes: when mixing is slow, localized ex-
cited perturbations propagate throughout a closed domain; by

contrast, under rapid mixing, localized perturbations decay to
the uniform quenched state. In the propagative case, pertur-
bations spread in the form of filaments. For an excitable
medium, Neufeld et al. �7� describe three scenarios for a
closed flow: in the first, there is eventually a global excita-
tion, which is spatially incoherent, so different parts of the
domain are excited at different times; in the second, there is
again a global excitation, but this time it is spatially coher-
ent, and ultimately the system homogeneously decays to the
unexcited state; in the third, the excitation enjoys no signifi-
cant propagation before its ultimate decay. Kiss et al. �12�
investigate a chemical reaction scheme capable of supporting
both steady and oscillatory homogeneous states, subject to
chaotic mixing. They find that ultimately the system reaches
a spatially homogeneous state, which may be of either steady
or oscillatory type, depending on the parameters.

We shall show here the existence of a third regime—
beyond the global quenched and excited states—comprising
a persistent localized disturbance. For definiteness, we con-
sider the model bistable reaction scheme in which a chemical
concentration A�x , t� satisfies, in dimensionless form,

�A

�t
+ u · �A = Pe−1 �2A + Da A�1 − A��A − �� , �1�

where 0���1/2 �6,7,13�. Here Pe=UL /D is the Péclet
number, Da=kC2 /UL is the Damköhler number, and u�x , t�
is the dimensionless fluid velocity �here U, L, and C are
scales for the fluid velocity, lengths, and chemical concentra-
tions, respectively; D is the diffusion coefficient and k is the
reaction constant�. In view of the need to carry out well
resolved simulations at moderately high Péclet number, we
shall consider a two-dimensional problem, in which u is the
so-called “sine flow” �14�. This choice of flow permits a
particularly efficient and accurate spectral numerical solution
of the problem �15,16�.

Let us now discuss the behavior of �1�. First consider the
reaction in the spatially homogeneous case. Then if the initial
value of A exceeds the threshold �, A→1 at large times. By
contrast, if A is initially less than the threshold, then A→0 at
large times. We expect a similar scenario to hold in �1� if the
initial state is nonhomogeneous, but the mixing is suffi-
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ciently rapid: an initial state is first rapidly averaged in space,
then the long-time behavior of the system depends on
whether or not, in this averaged �nearly spatially homoge-
neous� state, A exceeds �. In the opposite limit of no fluid
motion, an initial localized disturbance spreads or becomes
extinct depending on the initial state, but if the disturbance
takes the form A=A0 �a constant� in some finite region �,
and A=0 outside �, then the condition for the disturbance to
spread is roughly that A0 should exceed �. We expect a simi-
lar scenario for slow fluid mixing. These considerations, and
the results of Refs. �6,7,9,12�, suggest that, in a closed flow,
the fate of a localized disturbance in �1� is as follows: the
system tends to a uniform state at large time, with A�0 �for
sufficiently rapid mixing or slow reaction or weak initial
perturbation� or A�1 �for sufficiently slow mixing or rapid
reaction�. Furthermore, given an initial disturbance that leads
to the latter globally excited state for given values of Da and
Pe, one would expect that a sufficient reduction in Da would
cause the reaction to proceed instead to the quenched state.
However, we show here that there is an additional, interme-
diate scenario, in which the perturbation appears to remain
localized for all time, spread along a segment of the unstable
manifold of an unstable periodic orbit of the flow. We inves-
tigate this localized state through numerical simulation of
�1�, in particular exploring its dependence on Damköhler and
Péclet numbers, and on the initial state. Finally, we shed
some limited analytical light by consideration of a reduced,
lamellar model that represents the balance between spreading
of the hot spot due to reaction and diffusion, and compres-
sive effects of the flow.

II. SIMULATIONS

In this section we describe some numerical simulations of
�1�. Stirring of the fluid is accomplished by the “sine flow,”
which is time periodic with period T; then �14�

u = ��sin 2�y,0� for mT � t � �m + 1
2�T ,

�0,sin 2�x� for �m + 1
2�T � t � �m + 1�T ,

�2�

for m=0,1 ,2 , . . . . The simulations take place in a doubly
periodic square box 0�x ,y�1. We consider the “globally
chaotic” case T=1.6, for which the Poincaré section appears
to the eye to have no significant regular islands. The initial
condition is given by the Gaussian concentration profile

A�x,y,0� = exp�− 100���x − 1/4�2 + �y − 1/4�2�/Q� , �3�

for 0�x ,y�1, so that the initial spatially averaged concen-
tration is

	A
 = 0.01 � Q at t = 0.

In most simulations, Q=1, although we also briefly consider
other values of Q, in the range 0�Q�2. The choice to
center the initial disturbance on the point �0.25,0.25� was
arbitrary, but, as we shall see, it proves serendipitous.

We simulate �1� subject to the flow field �2� and the initial
state �3� using a pseudospectral code, which is described in
Ref. �16� �see also Ref. �15��. The Péclet number in our
simulations is limited to 105, to ensure well resolved results

with our available computational resources. Most simula-
tions up to Pe=104 are carried out using 512 Fourier modes
in each of the x and y directions, and a time step of 2
�10−3; unlike the simulations reported elsewhere �16�,
which exclusively use the second-order time-stepping
scheme ETDRK2, we mostly use here the fourth-order
scheme ETDRK4 �see Ref. �17� for details of these two
schemes�.

In all the numerical simulations below, the sine flow is
fixed to have period T=1.6, in order to avoid the appearance
and disappearance of regular islands with varying T. Thus
our investigation of the effects of fluid mixing is carried out
by varying the Péclet number �smaller and larger values of
this parameter corresponding, respectively, to more rapid and
slower mixing�. We also investigate the influence of the re-
action rate and the initial amount of A upon the long-time
behavior of the system through varying the Damköhler num-
ber Da and Q, respectively.

Numerical results: In all our simulations, we set �=0.25.
Thus for sufficiently rapid mixing the reaction is quenched
�since the initial averaged concentration 	A
=0.01Q�0.25�,
and for slow enough mixing the disturbance spreads through-
out the domain �since the peak initial concentration Amax
=1�0.25�.

We first set Pe=104 and Q=1 and consider the effect of
varying Da. Figure 1 shows some illustrative results. For
Da=6, the reaction is too slow to sustain itself and A→0
everywhere as t→	. For Da=12, the reaction is fast enough
to overcome the diluting influence of the fluid mixing; in this
case A→1 everywhere as t→	. The choice Da=8 provides
an intermediate case, for which the reaction proceeds to nei-
ther homogeneous state as t→	, but rather generates a per-
sistent time-dependent state in which A=0 in most of the
flow domain, but A�1 in a small time-dependent region.
This region turns out, upon further examination, to lie in the
vicinity of a period-6 orbit of the underlying flow field u.
The localized state appears to be time periodic, with a period
of 6T, while the spatial mean concentration 	A
 appears to
have period 3T. We have tracked this solution for many tens
of periods, and it is robust. A further simulation, at Da=9, at

FIG. 1. �a� Time evolution of the spatially averaged concentra-
tion 	A
 for Pe=104, from the initial condition �3�, with Q=1, for
various Damköhler numbers, as indicated.

STEPHEN M. COX PHYSICAL REVIEW E 74, 056206 �2006�

056206-2



first appears to produce another �somewhat larger� localized
“hot spot,” but the hot spot does not approach a time-
periodic state; instead it gradually grows, eventually filling
the entire flow domain, so that 	A
→1.

The localization on an unstable periodic orbit is readily
understood in qualitative terms, as follows. In the vicinity of
such an orbit there are directions of local compression and
stretching. In the compressive direction, a balance is main-
tained between the spreading of the reaction-diffusion front
and the compressive velocity field �6,7,13�, resulting in a
finite “width” for the hot spot. The hot spot is also stretched
along the unstable manifold of the periodic orbit; growth in
its length seems to be moderated by the inability of the re-
action to sustain a thin filamentary structure in the vigorous
fluid mixing.

We have located this unstable period-6 orbit, using the
stabilization algorithm of Pingel, Schmelcher, and Diakonos
�18� �see Fig. 2�: at times mT, where m is an integer, the
points �xm ,ym� on the orbit are

¯ → �0,0.2935� → �0.7032,0.5� → �0.7032,0.7065�

→ �0,0.7065� → �0.2968,0.5� → �0.2968,0.2935� → ¯ .

We note that, allowing for the spatial periodicity of the flow
in both x and y, we have �xm+3 ,ym+3�= �1−xm ,1−ym�, corre-
sponding to a rotation of � radians about the center of the
flow domain. A corresponding symmetry may be observed in
the concentration contours in Fig. 2 �following from the
point symmetry of the velocity field u about the center of
the flow domain�, explaining why 	A
 has period 3T rather

than 6T. Recall that our initial condition �3� is centered
on the point �0.25,0.25�, which is close to the point
�0.2968,0.2935� on the period-6 orbit; this fortunate proxim-
ity underlies our finding the hot spot.

We compute that the Jacobian matrix associated with the
period-6 orbit has eigenvalues 18.73 and 0.053. In the next
section we shall use this information regarding the stretch
rate close to the periodic orbit in the development of a re-
duced model for the hot spot.

Figure 3 summarizes the results of a large set of simula-
tions, all at Q=1, for different Damköhler and Péclet num-
bers. Since the goal of the simulations was to determine the
boundaries in parameter space between the three different
long-time behaviors, we have not attempted to fill in data
where the behavior is �presumably� predictable. �It should be
noted that each simulation currently takes on the order of a
day or two to run on a desktop PC.� Gaps in the data towards
the lower right-hand part of the figure reflect the increased
length of runs required there for the long-time behavior to
become apparent.

Consider first the parameter dependence to the left of Fig.
3: if we start in the region of hot spots and decrease either Da
or Pe then we move into the 	A
→0 region. This is because
either the reaction rate becomes too low to sustain the hot
spot, or the initial rate of spreading of the chemical becomes
too great for an adequate level of material to be delivered to
the period-6 orbit in the first instance. Hence the system is
quenched. To the right of the figure, if we start in the hot spot
region and increase Da then we move into the 	A
→1 re-
gion, because the reaction rate becomes too great for the hot
spot to remain localized. Similarly, if we instead reduce Pe,
then again the hot spot cannot remain localized, due to its
enhanced rate of spreading through diffusion, and the system
is globally excited. The parameter dependence of the system
towards the lower right-hand side of the data in Fig. 3 is
rather subtle, since a reduction in Pe may lead either to the
quenched state or to the excited state. Indeed, we find that
our numerical simulations in this region of parameter space
often involve a transient, slowly evolving hot spot before
eventually selecting the ultimate quenched or excited state.

FIG. 2. The circles are centered on a period-6 periodic orbit of
the sine flow �2�, plotted at times T ,2T , . . . ,6T �recall that the line
x=0 is identified with the opposite edge x=1�. Also shown are the
contours A�x ,y , t�=0.5 at corresponding times, for a hot spot found
at Da=6 and Pe=105, indicating that the hot spot is located in the
vicinity of the period-6 orbit.

FIG. 3. Long-time behavior of �1�, subject to �2� and �3� with
Q=1, in Da-Pe parameter space. The three long-time fates are 	A

→0 �*�; a localized hot spot �+�; 	A
→1���.
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We next discuss the influence of the initial amount of A
upon the long-time behavior of the system. To this end, we
have carried out simulations with Pe=104 and Da=8 for a
range of values of Q. As Fig. 4 shows, Q
1.4 leads to the
globally excited state, Q�0.38 leads to the globally
quenched state, and intermediate values of Q lead to a hot
spot at long times. Although it is not apparent from the fig-
ure, which focuses on relatively short-time results, the long-
time hot spot solution is the same for all of these simulations
with Q in the appropriate range �this is evident in a sample of
longer simulations that we have carried out, but which are
not reported here�. In other words, for these simulations the
ultimate hot spot solution depends only on the system param-
eters �i.e., T, Pe, and Da�; the role of the initial condition is
merely to determine which of the three long-time states is
selected.

We now turn to the Péclet number dependence of the hot
spot, characterizing the rate of fluid mixing. In Fig. 5, we fix
the reaction rate Da=6 and Q=1 and vary Pe. Here we find
that at Pe=104, as we have described above, the relatively
rapid mixing quenches the reaction, so that A→0 every-
where. At Pe=105/3 and at Pe=105, by contrast, the mixing
is slower, and we again find a persistent hot spot. If we
accept the qualitative picture above, that the width of the hot
spot is determined by a balance between compression and
reaction diffusion, while its length is determined by mixing
in the bulk then the width should scale as Pe−1/2 for large Pe,
and the length should remain roughly independent of Pe.
Then the mean concentration 	A
 should scale as Pe−1/2. For
the two hot spots indicated in Fig. 5, this scaling is borne out,
although admittedly over a very short range: we find, for the
minimum value of 	A
 over the cycle, that Pe1/2	A
min

=0.98 and 1.02 at Pe=105/3 and 105, respectively. �These
values would be equal if the Péclet number scaling of 	A

were exact.� The corresponding values of the maximum
mean concentrations over the cycle are Pe1/2	A
max=1.15 and

1.10. If the qualitative argument holds, then one should ex-
pect that as Pe is increased beyond 105, the hot spot persists,
with 	A
 continuing to scale with Pe−1/2. Unfortunately we
are unable to simulate reliably beyond Pe=105, so we are
unable to confirm this prediction.

III. LAMELLAR MODEL

There has recently �5–11,13,19,20� been significant
progress in understanding the dynamics of reaction-
advection-diffusion problems such as �1� by analyzing re-
duced “filamental” or “lamellar” models �21�, which concern
the simpler problem of the evolution of the reaction in a
one-dimensional setting, in our case

�A

�t
− ��

�A

��
= Pe−1�2A

��2 + Da A�1 − A��A − �� . �4�

Here � represents a coordinate in the compressive direction
near an unstable periodic orbit of the sine flow. This is the
“Lagrangian filament slice model,” which has been thor-
oughly reviewed by Tél et al. �22�, largely, but not entirely,
in the context of open rather than closed flows.

This model might be expected to provide at least a partial
picture of the behavior of the hot spot. To see this, we first
note that the hot spot is a thin structure, which appears, from
the two-dimensional numerical simulations of Section II A,
to be approximately concentrated around the unstable mani-
fold of an unstable periodic orbit. Thus we approximate the
flow in the neighborhood of the orbit by its linearization. The
key balance in determining the existence or otherwise of the
hot spot is that between the compressive flow in the direction
of the stable manifold �represented by the term −��A� in �4��
and the tendency of the hot spot to spread as a reaction-
diffusion front �represented by the right-hand side of �4��,
and so we reduce consideration to one-dimensional varia-
tions along the stable manifold, and ignore variations along
the unstable manifold. This remains a complicated model,
and so we take the further gross liberty of assuming that the
flow field along the stable manifold is time independent, with
a uniform and constant rate of compression �. For example,

FIG. 4. Time evolution of 	A
 for Da=8 and Pe=104, from the
initial condition �3�, for various values of Q. �The value of Q cor-
responding to each curve may be determined as 100 times the initial
value of 	A
.� For Q=2,1.5,1.4, A→1 everywhere at long time; for
Q=0.38,0.35,0.3, A→0 everywhere at long time. Intermediate val-
ues of Q lead to the �same� hot spot solution; such results are shown
for Q=0.39 and for Q from 0.4 to 1.3 in steps of 0.1.

FIG. 5. Time evolution of 	A
 for Da=6, from the initial condi-
tion �3�, for various Péclet numbers, as indicated.
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for the period-6 orbit, the value of � is chosen such
that exp�−6�T� corresponds to the compressive eigenvalue
of the Jacobian matrix of the periodic orbit �i.e.,
�= �−ln 0.0534� / �6T�=0.3052�. We are thus led to �4� as a
simplified one-dimensional model. Since nontrivial solutions
to �4� are localized around the origin, we may make the
further simplification that the corresponding spatial domain
is −	 ���	.

Let us now briefly recall some relevant known results for
�4�. An exact characterization of the behavior of a single
reaction-diffusion front in �4� is possible in the absence of
the advection term −��A� �6,22,23�: such a front between
A=1 as �→−	 and A=0 as �→	 moves with velocity v
= �Da/2 Pe�1/2�1−2��. Furthermore, its profile is readily de-
termined to be A= �1+exp�
��−vt���−1 �up to some shift in
time or space origin�, where 
= �Da Pe/2�1/2.

In the presence of the advection term, such an exact char-
acterization of solutions to �4� is no longer possible, although
�large-Da� asymptotic and numerical treatments are available
�13�. Of particular interest in the present context is the be-
havior of solutions to �4� on −	 ���	 from localized ini-
tial disturbances, which is well documented �6,11,13,22�: if
Da/� is less than some threshold f��� then all initial states
decay to A�0; however, if Da/�� f��� then an above-
threshold initial state generally tends to a nontrivial, stable,
steady localized state as t→	. The transition at Da/�
= f��� is a saddle-node bifurcation �11,24�. For �=0.25, as in
our two-dimensional simulations, we find this saddle-node
bifurcation to be at f�0.25�=11.13 �by solving �4� numeri-
cally and tracking the stable steady state as Da is reduced�.
Since �=0.3052, we thus conclude that no hot spots should
be possible in the two-dimensional simulations for Da�3.4.
It is certainly the case that we have observed no hot spots for
such small Damköhler numbers; indeed, the lowest
Damköhler number for which we have observed hot spots is
6. Given the small sample of parameter space provided by
our simulations and the gross assumptions made in arguing
for �4�, this seems to represent reasonable agreement be-
tween this model and the full simulations. Further quantita-
tive comparisons may be made by examining the structure of
the hot spot itself. To this end, Fig. 6 shows a cross section of
the concentration through the hot spot, from two-
dimensional simulations of �1� and from the model �4�. The

general concentration profile is captured well by the model,
although the hot spot itself is rather narrower than the one-
dimensional model prediction. The one-dimensional model
also predicts that only sufficiently wide Gaussian initial con-
ditions will generate a hot spot, for supercritical Damköhler
numbers �13�. This dependence upon the initial condition is
qualitatively consistent with the full system, as illustrated in
Fig. 4.

Of course, the one-dimensional model �4� has only lim-
ited predictive power for the full two-dimensional system.
While the saddle-node bifurcation of the model seems to
capture the demise of the hot spot as the Damköhler number
is decreased, as illustrated in Fig. 1, there is no mechanism in
the model for global excitation �instead the model predicts a
hot spot whose width grows like Da1/2 for large Da �13��. In
other words, the model predicts behavior qualitatively con-
sistent with the left-hand boundary of the hot spot region in
Fig. 3, but not the right-hand boundary. A further shortcom-
ing of the model is that its dependence upon the Péclet num-
ber can be removed by a straightforward scaling of �, unlike
the full two-dimensional problem. As a consequence, the
saddle-node bifurcation in �4� is independent of Pe and, for a
given Damköhler number, the stable steady-state solution
simply becomes thinner as the Péclet number is increased,
with width proportional to Pe−1/2. Such behavior is in con-
trast to the precipitate loss of the hot spot illustrated in Fig. 5
for Pe=104, and the left-hand boundary of the hot spot re-
gion in Fig. 3.

IV. CONCLUSIONS AND DISCUSSION

For a bistable chemical reaction mixed in a chaotic lami-
nar fluid flow, we have demonstrated numerically localized
states that seem to persist indefinitely. In a sweep of param-
eter space, these localized states provide a case intermediate
between global quenching and global excitation of the reac-
tion, as the Damköhler number is varied. They are associated
with an unstable periodic orbit, and their existence may par-
tially be understood in terms of a simple lamellar model.

The long-time behavior of the system is strongly depen-
dent on the size of the initial disturbance: too large or small
and the system approaches, respectively, globally excited or
quenched states; only for initial disturbances of intermediate
size can a hot spot be found.

The broad influence of the Damköhler number upon the
long-time state of the system is straightforward to summa-
rize: if we begin with parameter values that lead to a hot
spot, then a sufficient increase or decrease in the Damköhler
number takes the system instead to the globally excited or
quenched states.

The influence of the Péclet number is slightly more com-
plicated. Again suppose that we start with parameter values
leading to a hot spot, and consider the effects of reducing the
Péclet number �i.e., enhancing diffusion�. For lower reaction
rates �i.e., smaller Damköhler numbers�, we find that the en-
hanced initial smearing of a localized initial disturbance re-
sults ultimately in a globally quenched state. When the reac-
tion rate is greater, however, the nascent hot spot is able to
sustain itself even in the presence of the enhanced diffusive

 0
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 1

-0.02 -0.01  0  0.01  0.02
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ξ
FIG. 6. Cross-section through the hot spot at Pe=105 and Da

=6. Dashed line, from �1�, with � being a coordinate roughly nor-
mal to the hot spot. Solid line, corresponding prediction from �4�.
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spreading, but is unable to remain localized when the Péclet
number is reduced sufficiently; thus the system approaches
the globally excited state.

Since we are unable to accurately simulate Péclet num-
bers greater than approximately 105, any large-Péclet number
trends are inaccessible to our numerics. Nevertheless, we
conjecture that a hot spot generally persists as the Péclet
number is increased �all other parameters being fixed�, with
the amount of chemical present scaling as Pe−1/2. Of course,
an exception to this suggestion would arise if one chose an
initial condition for which diffusion was essential in trans-
porting enough of an initial patch of chemical to the vicinity
of the periodic orbit upon which the hot spot would ulti-
mately be attached. Then it is possible that too large a Péclet
number would lead to insufficient material reaching the in-
tended periodic orbit, and hence to a globally quenched state.

Our discovery of these “hot spots” resulted from a lucky
choice of localized initial state, which happened to be cen-
tered close to an unstable period-6 orbit. However, since the
initial disturbance lay in the chaotic region �apart from regu-
lar islands too small to see in a Poincaré section of the flow�
the initial state must also have covered infinitely many other
unstable periodic orbits, and we have no explanation for why

one particular orbit should have been selected as the location
of the hot spot. It seems likely that other choices of initial
conditions and parameter regimes will lead to robust hot
spots besides the period-6 orbit evidenced here.

Although we have demonstrated hot spots for a single
specific model reaction scheme, we expect similar hot spots
to be observable in other stirred multistable chemical reac-
tions �subject to sufficient luck or judgment in choosing the
initial conditions and parameter values�.

Finally, we note that the existence and indefinite coher-
ence of the hot spots reported here is due to the periodic
nature of the mixing flow u. In a randomized sine flow, for
example, in which the phase of the underlying shear flows is
chosen randomly at each period, we would not expect a simi-
lar persistent phenomenon.
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